top of page


13. Topological recursion for Orlov--Scherbin tau functions, and constellations with internal faces
Joint with V. Bonzom, G. Chapuy and S. Charbonnier, arXiv:2206.14768 
(submitted for publication)

12. Relations on Mg,n and the negative r-spin Witten conjecture
Joint with N. K. Chidambaram and A. Giacchetto, arXiv:2205.15621 (submitted for publication

11. Shifted Witten classes and topological recursion
Joint with S. Charbonnier, N. K. Chidambaram and A. Giacchetto, arXiv:2203.16523 (submitted for publication

10. Analytic theory of higher order free cumulants
Joint with G. Borot, S. Charbonnier, F. Leix and S. Shadrin, arXiv:2112.12184 (submitted for publication)

9. Topological recursion for fully simple maps from ciliated maps
Joint with G. Borot and S. CharbonnierarXiv:2106.09002 (submitted for publication)

8. Quantization of classical spectral curves via topological recursion
Joint with B. Eynard, O. Marchal and N. OrantinarXiv:2106.04339 (submitted for publication)

7. Topological recursion for generalised Kontsevich graphs and r-spin intersection numbers
Joint with R. Belliard, S. Charbonnier and B. EynardarXiv:2105.08035

6. A curious identity that implies Faber's conjecture
Joint with D. Zagier, Bull. Lond. Math. Soc. 54, (2022), 5, 

5. From topological recursion to wave functions and PDEs quantizing hyperelliptic curves
Joint with B. EynardarXiv:1911.07795 (submitted for publication)

4. Relating ordinary and fully simple maps via monotone Hurwitz numbers
Joint with G. Borot, S. Charbonnier and N. Do, Electron. J. Combin. 26, (2019), 3, arXiv:1904.02267

3. Half-spin tautological relations and Faber's proportionalities of kappa classes
Joint with R. Kramer, D. Lewański and S. Shadrin, SIGMA 15 (2019), 080, arXiv:1902.02742

2. Simple maps, Hurwitz numbers, and Topological Recursion
Joint with G. Borot, Comm. Math. Phys. 380 (2020), 2, arXiv:1710.07851 

1. Nesting statistics in the O(n) loop model on random maps of arbitrary topologies
Joint with G. Borot, arXiv:1609.02074 (submitted for publication)

Ph.D. thesis: On discrete surfaces: Enumerative geometry, matrix models and universality classes via topological recursion (arXiv:2002.00316)
Supervised by Gaëtan Borot and Don Zagier. Max Planck Institute for Mathematics, 2018.

bottom of page