top of page


15. Resurgent large genus asymptotics of intersection numbers
With B. Eynard, A. Giacchetto, P. Gregori and D. LewańskiarXiv:2309.03143 (submitted)

13. Topological recursion for Orlov--Scherbin tau functions, and constellations with internal faces
With V. Bonzom, G. Chapuy and S. Charbonnier, arXiv:2206.14768 (submitted)

12. Relations on Mg,n and the negative r-spin Witten conjecture
With N. K. Chidambaram and A. Giacchetto, arXiv:2205.15621 (submitted)

10. Functional relations for higher order free cumulants

With G. Borot, S. Charbonnier, F. Leix and S. Shadrin, arXiv:2112.12184 (submitted)

9. Topological recursion for fully simple maps from ciliated maps
With G. Borot and S. CharbonnierarXiv:2106.09002 (submitted)

8. Quantization of classical spectral curves via topological recursion
With B. Eynard, O. Marchal and N. OrantinarXiv:2106.04339 (submitted)

7. Topological recursion for generalised Kontsevich graphs and r-spin intersection numbers
With R. Belliard, S. Charbonnier and B. EynardarXiv:2105.08035 


14. Resurgent Asymptotics of Jackiw--Teitelboim Gravity and the Nonperturbative Topological Recursion 
With B. Eynard, P. Gregori, D. Lewański and R. Schiappa, arXiv:2305.16940 (accepted in Ann. Henri Poincare)

11. Shifted Witten classes and topological recursion
With S. Charbonnier, N. K. Chidambaram and A. Giacchetto, Trans. Am. Math. Soc. 377 (2024), arXiv:2203.16523

6. A curious identity that implies Faber's conjecture
With D. Zagier, Bull. Lond. Math. Soc. 54, (2022), 5, arXiv:2101.02187

5. From topological recursion to wave functions and PDEs quantizing hyperelliptic curves
With B. Eynard, Forum of Mathematics, Sigma, 11 (2023), E99, arXiv:1911.07795

4. Relating ordinary and fully simple maps via monotone Hurwitz numbers
With G. Borot, S. Charbonnier and N. Do, Electron. J. Combin. 26, (2019), 3, arXiv:1904.02267

3. Half-spin tautological relations and Faber's proportionalities of kappa classes
With R. Kramer, D. Lewański and S. Shadrin, SIGMA 15 (2019), 080, arXiv:1902.02742

2. Simple maps, Hurwitz numbers, and Topological Recursion
With G. Borot, Comm. Math. Phys. 380 (2020), 2, arXiv:1710.07851 

1. Nesting statistics in the O(n) loop model on random maps of arbitrary topologies
With G. Borot, arXiv:1609.02074 (accepted in Ann. Inst. Henri Poincare (D))

Ph.D. thesis: On discrete surfaces: Enumerative geometry, matrix models and universality classes via topological recursion (arXiv:2002.00316)
Supervised by Gaëtan Borot and Don Zagier. Max Planck Institute for Mathematics, 2018.

bottom of page